Extensions 1→N→G→Q→1 with N=C52 and Q=Dic5

Direct product G=N×Q with N=C52 and Q=Dic5
dρLabelID
Dic5×C52100Dic5xC5^2500,37

Semidirect products G=N:Q with N=C52 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C52⋊Dic5 = He5⋊C4φ: Dic5/C1Dic5 ⊆ Aut C522520+C5^2:Dic5500,21
C522Dic5 = He55C4φ: Dic5/C2D5 ⊆ Aut C5210010-C5^2:2Dic5500,8
C523Dic5 = He56C4φ: Dic5/C2D5 ⊆ Aut C521005C5^2:3Dic5500,11
C524Dic5 = C5×D5.D5φ: Dic5/C5C4 ⊆ Aut C52204C5^2:4Dic5500,42
C525Dic5 = C53⋊C4φ: Dic5/C5C4 ⊆ Aut C52100C5^2:5Dic5500,45
C526Dic5 = C536C4φ: Dic5/C5C4 ⊆ Aut C52204C5^2:6Dic5500,46
C527Dic5 = C537C4φ: Dic5/C5C4 ⊆ Aut C52100C5^2:7Dic5500,47
C528Dic5 = C5×C526C4φ: Dic5/C10C2 ⊆ Aut C52100C5^2:8Dic5500,38
C529Dic5 = C5312C4φ: Dic5/C10C2 ⊆ Aut C52500C5^2:9Dic5500,39

Non-split extensions G=N.Q with N=C52 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C52.Dic5 = C50.C10φ: Dic5/C2D5 ⊆ Aut C5210010-C5^2.Dic5500,9
C52.2Dic5 = D5.D25φ: Dic5/C5C4 ⊆ Aut C521004C5^2.2Dic5500,19
C52.3Dic5 = C5×Dic25φ: Dic5/C10C2 ⊆ Aut C521002C5^2.3Dic5500,6
C52.4Dic5 = C50.D5φ: Dic5/C10C2 ⊆ Aut C52500C5^2.4Dic5500,10

׿
×
𝔽